
$1 #2 +3 K4 abort-command
Default binding: ^G
This command is used interactively to abort out of any command that is waiting for input.
It can be used within a macro to sound a beep but, unless it is used with the !FORCE
directive, it causes the macro to abort.
This command is unaffected by numeric arguments.

1$ abort-command
2# abort_command
3+ Commands:abortcommand
4K abort;abort-command

$5 #6 +7 K8 add-global-mode
Default binding: M-M
Syntax:

add-global-mode        mode
or:

add-global-mode        color
This command causes the specified mode to be inherited by future (not yet created) buffers
(These global modes can later be revoked by the delete-global-mode command). It can also
be used to specify the foreground or background color for future windows.
This command does not modify the modes/colors of the current buffer/window. To do so, use
the add-mode command.
This command is unaffected by numeric arguments.

5$ add-global-mode
6# add_global_mode
7+ Commands:addglobalmode
8K mode;color;add-global-mode

$9 #10 +11 K12 add-mode
Default binding: ^XM
Syntax:

add-mode    mode
or:

add-mode    color
This command adds the specified mode to the current buffer. It can also be used to specify
the foreground or background color for the current window.
To set the default modes/colors for all future buffers/windows, use the add-global-mode
command.
This command is unaffected by numeric arguments.

9$ add-mode
10# add_mode
11+ Commands:addmode
12K mode;color;add-mode

$13 #14 +15 K16 append-file
Default binding: ^X^A
Syntax:

append-file    file name
Similar to write-file, this command writes out the current buffer to the named file, but rather
than replacing its contents, it appends the buffer to the end of the existing text in the file.
This does not change the filename of the current buffer. It is especially handy for building log
files.
This command is unaffected by numeric arguments.

13$ append-file command
14# append_file
15+ Commands:appendfile
16K append;file;append-file

$17 #18 +19 K20 apropos
Default binding: M-A
Syntax:

apropos    string
This command builds a list of all the MicroEMACS commands and macros whose name
contains the specified string. The list is stored in a buffer named "Binding list" and is
displayed either in a popup buffer or in a regular window, depending on the value of the
$popflag variable.
Commands are listed first, followed by macros (macro names are enclosed in square
brackets "[" and "]"). For each command or macro listed, the associated bindings are also
listed.
This command is unaffected by numeric arguments.

17$ apropos command
18# apropos
19+ Commands:apropos
20K apropos

$21 #22 +23 K24 backward-character
Default bindings: ^B and FNB (left arrow)
Syntax:

n    backward-character
This command moves the point backward by n characters. If n is a negative number, the
point is moved forward. If no numeric arguments is specified, the point is moved backward
by one character.
Note: end of lines count as one character.
If the move would take the point beyond the boundaries of the buffer, this command fails
and the point is left at said boundary.

21$ backward-character
22# backward_character
23+ Commands:backwardcharacter
24K character;position;point;backward-character

$25 #26 +27 K28 begin-macro
Default binding: ^X(
This command tells MicroEMACS to begin recording all keystrokes, commands and mouse
clicks into the keyboard macro. MicroEMACS stops recording when the end-macro (^X))
command is given.
The recording can be replayed by execute-macro (^XE).
This command is unaffected by numeric arguments.
Note: mouse clicks are recorded with the screen (row/column) position they occurred at.

25$ begin-macro command
26# begin_macro
27+ Commands:beginmacro
28K begin-macro;macro

$29 #30 +31 K32 beginning-of-file
Default binding: M-<
This command causes the point to move to the beginning of the buffer.
It is unaffected by numeric arguments.

29$ beginning-of-file
30# beginning_of_file
31+ Commands:beginningoffile
32K beginning;position;point;beginning-of-file

$33 #34 +35 K36 beginning-of-line
Default binding: ^A
This command causes the point to move to the beginning of the current line.
It is unaffected by numeric arguments.

33$ beginning-of-line
34# beginning_of_line
35+ Commands:beginningofline
36K position;point;beginning-of-line

$37 #38 +39 K40 bind-to-key
Default binding: M-K
Syntax:

bind-to-key    command name    keystroke
This command associates a command with a keystroke, thus creating a binding. A keystroke
can be bound only to one command or macro at a time, so when you rebind it, the previous
binding is forgotten. On the other hand, a command can have more than one keystroke
bound to it.
The keystroke is specified using the keystroke syntax or the mouse syntax.
This command cannot be used to specify the key binding for a macro. That is performed by
the macro-to-key command.
This command is unaffected by numeric arguments.

37$ bind-to-key command
38# bind_to_key
39+ Commands:bindtokey
40K bind-to-key;binding

$41 #42 +43 K44 bind-to-menu
No default binding
Syntax:

bind-to-menu    command name    menu name
This command is available only under Microsoft Windows. It creates a menu item associated
with the specified command. The menu name is specified using the menu name syntax.
If the menu name designates a menu item that already exists, the command fails.
If the menu name specifies menus that do not exist yet, they are created as part of the
creation of the menu item.
This command cannot be used to bind a macro to a menu. That is performed by the macro-
to-menu command.
This command is unaffected by numeric arguments.

41$ bind-to-menu command
42# bind_to_menu
43+ Commands:bindtomenu
44K bind-to-menu;binding;menu

$45 #46 +47 K48 buffer-position
Default binding: ^X=
This command displays, on the message line, the position of the point within the current
window. It lists:

The line (starting at 1), followed by the total number of lines in the buffer
The column (starting at 0), followed by the length of the current line
The character offset (starting at 0, newlines counting as a single character) from the
beginning of the buffer, followed by the total number of character in the buffer
The percentage of text before the point
The hexadecimal value of the current character

This command is unaffected by numeric arguments.

45$ buffer-position
46# buffer_position
47+ Commands:bufferposition
48K position;point;buffer-position

$49 #50 +51 K52 cascade-screens
No default binding
This command is available only under Microsoft Windows. It causes all non-iconic screens to
be rearranged in a cascading scheme. If the current screen is maximized (see maximize-
screen) at the time this command is invoked, it is restored to its non-maximized size first.
This command is unaffected by numeric arguments.

49$ cascade-screens
50# cascade_screens
51+ Commands:cascadescreens
52K MDI;screen;cascade-screens

$53 #54 +55 K56 case-region-lower
Default binding: ^X^L
This command causes all the upper case characters in the region to be changed into their
lower case counterpart.
The command fails if the mark is not defined in the current window.
This command is unaffected by numeric arguments.

53$ case-region-lower
54# case_region_lower
55+ Commands:caseregionlower
56K case;region;case-region-lower

$57 #58 +59 K60 case-region-upper
Default binding: ^X^U
This command causes all the lower case characters in the region to be changed into their
upper case counterpart.
The command fails if the mark is not defined in the current window.
This command is unaffected by numeric arguments.

57$ case-region-upper
58# case_region_upper
59+ Commands:caseregionupper
60K case;region;case-region-upper

$61 #62 +63 K64 case-word-capitalize
Default binding: M-C
Syntax:

n    case-word-capitalize
This command capitalizes n words after the point: it causes the first character of each word
to be forced to upper case and the other characters to be forced to lower case. After the
command has executed, the point is located just after the last processed word.
Note that since it starts by capitalizing the first letter after the point, this command would
normally be issued with the cursor positioned in front of the first letter of the word you wish
to capitalize. If you issue it in the middle of a word, you can end up with some strAnge
looking text.
The command fails if the numeric argument is negative or if it goes beyond the end of the
buffer. If n is null, nothing happens. If the numeric argument is not specified, only one word
is affected.

61$ case-word-capitalize
62# case_word_capitalize
63+ Commands:casewordcapitalize
64K case;word;case-word-capitalize

$65 #66 +67 K68 case-word-lower
Default binding: M-L
Syntax:

n    case-word-lower
This command forces to lower case n words after the point. After the command has
executed, the point is located just after the last processed word.
Note that since it starts by processing the first letter after the point, this command would
normally be issued with the cursor positioned in front of the first letter of the word you wish
to make lower case.
The command fails if the numeric argument is negative or if it goes beyond the end of the
buffer. If n is null, nothing happens. If the numeric argument is not specified, only one word
is affected.

65$ case-word-lower
66# case_word_lower
67+ Commands:casewordlower
68K case;word;case-word-lower

$69 #70 +71 K72 case-word-upper
Default binding: M-U
Syntax:

n    case-word-upper
This command forces to upper case n words after the point. After the command has
executed, the point is located just after the last processed word.
Note that since it starts by processing the first letter after the point, this command would
normally be issued with the cursor positioned in front of the first letter of the word you wish
to make upper case.
The command fails if the numeric argument is negative or if it goes beyond the end of the
buffer. If n is null, nothing happens. If the numeric argument is not specified, only one word
is affected.

69$ case-word-upper
70# case_word_upper
71+ Commands:casewordupper
72K case;word;case-word-upper

$73 #74 +75 K76 change-file-name
Default binding: ^XN
Syntax:

change-file-name    file name
This command lets you change the file name associated with the current buffer. It does not
change the buffer name. The disk file is unaffected.
This command is unaffected by numeric arguments.

73$ change-file-name command
74# change_file_name
75+ Commands:changefilename
76K change-file-name;file;name

$77 #78 +79 K80 change-screen-column
No default binding.
Syntax:

n    change-screen-column
This command modifies the offset of the current screen's left column on the desktop. The
numeric argument n specifies that offset in number of characters. If n is not specified, it is
taken as zero.
Using this command is equivalent to setting the $orgcol variable.
If n is negative or if it is positive but would cause the right border of the screen to be moved
off the desktop, the command fails.
Under Microsoft Windows, this command always resets $orgcol to zero and it has no other
effect.

77$ change-screen-column command
78# change_screen_column
79+ Commands:changescreencolumn
80K change-screen-column;screen

$81 #82 +83 K84 change-screen-row
No default binding.
Syntax:

n    change-screen-row
This command modifies the offset of the current screen's top row on the desktop. The
numeric argument n specifies that offset in number of characters. If n is not specified, it is
taken as zero.
Using this command is equivalent to setting the $orgrow variable.
If n is negative or if it is positive but would cause the bottom border of the screen to be
moved off the desktop, the command fails.
Under Microsoft Windows, this command    always resets $orgrow to zero and it has no other
effect.

81$ change-screen-row command
82# change_screen_row
83+ Commands:changescreenrow
84K change-screen-row;screen

$85 #86 +87 K88 change-screen-size
No default binding.
Syntax:

n    change-screen-size
This command modifies the height of the current screen, causing it to be n lines. If the
numeric argument n is not specified, it is taken to be the height of the whole desktop.
As the height of the screen changes, the bottom window is resized to fit. If the height is
decreased, windows that do not fit any more are eliminated, starting from the bottom one.
Using this command is equivalent to setting the $pagelen variable.
If n is lower than 3 or if it is greater than the height of the desktop, the command fails.
Under Microsoft Windows:

The height of a screen does not include the message line.
If n is not specified, the command fails.

85$ change-screen-size command
86# change_screen_size
87+ Commands:changescreensize
88K change-screen-size;screen

$89 #90 +91 K92 change-screen-width
No default binding.
Syntax:

n    change-screen-width
This command modifies the width of the current screen, causing it to be n characters. If the
numeric argument n is not specified, it is taken to be the width of the whole desktop.
Using this command is equivalent to setting the $curwidth variable.
If n is lower than 10 or if it is greater than the width of the desktop, the command fails.
Under Microsoft Windows, if n is not specified, the command fails.

89$ change-screen-width command
90# change_screen_width
91+ Commands:changescreenwidth
92K change-screen-width;screen

$93 #94 +95 K96 clear-and-redraw
Default binding: ^L
Syntax:

clear-and-redraw
or:

n    clear-and-redraw
This command performs two different functions, depending on the way it is invoked:
 wether it is invoked with a    or not:

If the command is invoked without a numeric argument, it causes all screens to be
completely repainted.
If the command is invoked with a numeric argument, it centers the line containing the
point in the current window. The value of the numeric argument is irrelevant.

93$ clear-and-redraw command
94# clear_and_redraw
95+ Commands:clearandredraw
96K clear-and-redraw;screen;window

$97 #98 +99 K100 clear-message-line
No default binding.
This command erases the text (if any) displayed on the message line.
This command is unaffected by numeric arguments.

97$ clear-message-line command
98# clear_message_line
99+ Commands:clearmessageline
100K clear-message-line

$101 #102 +103 K104 clip-region
Default binding: FN^C (Control+Insert)
This command copies the contents of the current region into the clipboard, overwriting any
previous clipboard data.
This command is unaffected by numeric arguments.

101$ clip-region command
102# clip_region
103+ Commands:clipregion
104K clip-region;clipboard

$105 #106 +107 K108 copy-region
Default binding: M-W
This command copies the contents of the current region into the kill buffer.
This command is unaffected by numeric arguments.

105$ copy-region command
106# copy_region
107+ Commands:copyregion
108K copy-region;region;kill

$109 #110 +111 K112 count-words
Default binding: M-^C
This command displays, on the message line, the number of words in the current region,
along with the number of characters, lines and the average number of characters per word.
This command is unaffected by numeric arguments.

109$ count-words command
110# count_words
111+ :countwords
112K count-words;word

$113 #114 +115 K116 ctlx-prefix
Default binding: ^X
This command is rarely used for execution in the macro language. Its main purpose is to be
mentioned in a bind-to-key command, to redefine the ^X prefix. For instance, the line:

bind-to-key    ctlx-prefix    FN1
redefines function key F1 as the prefix to be used in all keystrokes that begin by "^X-". After
this, keystrokes such as ^X^C would be actually typed by pressing and releasing the F1 key
and then pressing the Control key and the C key together.

113$ ctlx-prefix command
114# ctlx_prefix
115+ Commands:ctlxprefix
116K ctlx-prefix;control x

$117 #118 +119 K120 cut-region
Default binding: S-FND (Shift+Delete)
This command deletes the contents of the current region after copying them into the
clipboard, overwriting any previous clipboard data.
This command is unaffected by numeric arguments.

117$ cut-region command
118# cut_region
119+ Commands:cutregion
120K cut-region

$121 #122 +123 K124 cycle-ring
Default binding: ^XY
Syntax:

n    cycle-ring
This command causes the kill ring to rotate by n positions. For instance, if the contents of
the kill ring were K1, K2 ... K14, K15 and K16, the kill buffer would be K16. After a command:

2    cycle-ring
the kill buffer would be K14 and the kill ring would now be ordered: K15, K16, K1, K2 ... K14.
If no numeric arguments is specified, this command does not have any effect.

121$ cycle-ring command
122# cycle_ring
123+ Commands:cyclering
124K cycle-ring;kill

$125 #126 +127 K128 cycle-screens
Default binding: A-C
This command takes the rearmost screen (actually, the last screen in the screen list) and
moves it to the front.
This command is unaffected by numeric arguments.

125$ cycle-screens command
126# cycle_screens
127+ Commands:cyclescreens
128K cycle-screens;screen

$129 #130 +131 K132 delete-blank-lines
Default binding: ^X^O
If the point is on an empty line, this command deletes all the empty lines around (above and
below) the current line. If the point is on a non empty line then this command deletes all of
the empty lines immediately following that line.
This command is unaffected by numeric arguments.

129$ delete-blank-lines command
130# delete_blank_lines
131+ Commands:deleteblanklines
132K delete-blank-lines;delete;line

$133 #134 +135 K136 delete-buffer
Default binding: ^XK
Syntax:

delete-buffer    buffer name
This command attempts to discard the named buffer, reclaiming the memory it occupied. It
will not allow the destruction of a buffer which is currently visible through any window on
any screen.
This command is unaffected by numeric arguments.

133$ delete-buffer command
134# delete_buffer
135+ Commands:deletebuffer
136K delete-buffer;delete;buffer

$137 #138 +139 K140 delete-global-mode
Default binding: M-^M
Syntax:

Syntax:
delete-global-mode    mode

or:
delete-global-mode    color

This command causes the specified mode to be removed from the ones inherited by future
(not yet created) buffers (such global modes would have been set by the add-global-mode
command). It can also be used to specify the foreground or background color for future
windows.
This command does not modify the modes/colors of the current buffer/window. To do so, use
the delete-mode command.
This command is unaffected by numeric arguments.

137$ delete-global-mode command
138# delete_global_mode
139+ Commands:deleteglobalmode
140K delete-global-mode;mode;color

$141 #142 +143 K144 delete-kill-ring
Default binding: M-^Y
This command empties the kill ring (this includes the current contents of the kill buffer) and
reclaims the memory space it occupied.
This command is unaffected by numeric arguments.

141$ delete-kill-ring command
142# delete_kill_ring
143+ Commands:deletekillring
144K delete-kill-ring;kill

$145 #146 +147 K148 delete-mode
Default binding: ^X^M
Syntax:

delete-mode    mode
or:

delete-mode    color
This command removes the specified mode from the current buffer (these modes would
have been set by the add-mode or add-global-mode commands). It can also be used to
specify the foreground or background color for the current window.
To set the default modes/colors for all future buffers/windows, use the delete-global-mode
command.
This command is unaffected by numeric arguments.

145$ delete-mode command
146# delete_mode
147+ Commands:deletemode
148K delete-mode;mode;color

$149 #150 +151 K152 delete-next-character
Default binding: ^D
Syntax:

n    delete-next-character
or:

delete-next-character
If n is positive, this command deletes, and stores into the kill buffer, n characters after the
point. If n is negative, the -n characters preceding the point are deleted and stored into the
kill buffer.
If no numeric argument is specified, the character following the point is deleted, but it is not
stored into the kill buffer.
If an attempt to delete past the end or beginning of the buffer is made, the command fails.
Note that end of lines are counted as one character each for the purpose of deletion.

149$ delete-next-character command
150# delete_next_character
151+ Commands:deletenextcharacter
152K delete-next-character;kill

$153 #154 +155 K156 delete-next-word
Default binding: M-D
Syntax:

n    delete-next-word
This command deletes the text from the point to the beginning of the next word, saving it
into the kill buffer.
If a positive numeric argument is present, it specifies the number of words to be deleted. A
null numeric argument is treaded as a 1. A negative numeric argument causes the command
to fail.

153$ delete-next-word command
154# delete_next_word
155+ Commands:deletenextword
156K delete-next-word;delete;kill;word

$157 #158 +159 K160 delete-other-windows
Default binding: ^X1
This command deletes all other windows but the active one from the current screen.    It does
not discard or destroy any text, just stops looking at those buffers.
This command is unaffected by numeric arguments.

157$ delete-other-windows command
158# delete_other_windows
159+ Commands:deleteotherwindows
160K delete-other-windows;delete;window

$161 #162 +163 K164 delete-previous-character
Default binding: ^H (Backspace key) and FND (Delete key)
Syntax:

n    delete-previous-character
or:

delete-previous-character
If n is positive, this command deletes, and stores into the kill buffer, the n characters
preceding the point. If n is negative, the -n characters following the point are deleted and
stored into the kill buffer.
If no numeric argument is specified, the character preceding the point is deleted, but it is
not stored into the kill buffer.
If an attempt to delete past the end or beginning of the buffer is made, the command fails.
Note that end of lines are counted as one character each for the purpose of deletion.

161$ delete-previous-character command
162# delete_previous_character
163+ Commands:deletepreviouscharacter
164K delete-previous-character;kill

$165 #166 +167 K168 delete-previous-word
Default binding: M-^H
Syntax:

n    delete-previous-word
This command deletes the text from the point to the beginning of the previous word, saving
it into the kill buffer.
If a positive numeric argument is present, it specifies the number of words to be deleted. A
negative or null numeric argument causes the command to fail.

165$ delete-previous-word command
166# delete_previous_word
167+ Commands:deletepreviousword
168K delete-previous-word;delete;kill;word

$169 #170 +171 K172 delete-screen
Default binding: A-D
Syntax:

delete-screen    screen name
This command deletes the named screen, providing it is not the active one. Note that buffers
being displayed on that screen are not discarded.
This command is unaffected by numeric arguments.

169$ delete-screen command
170# delete_screen
171+ Commands:deletescreen
172K delete-screen;delete;screen

$173 #174 +175 K176 delete-window
Default binding: ^X0
This command removes the active window from the screen, giving its space to the window
above (or, if there is none, the window below). It does not discard or destroy any text, just
stops looking at that buffer.
If the window is alone on the screen, it cannot be removed and the command fails.
This command is unaffected by numeric arguments.

173$ delete-window command
174# delete_window
175+ Commands:deletewindow
176K delete-window;delete;window

$177 #178 +179 K180 describe-bindings
No default binding
This command creates a list of all commands and macros, each with all the keys which are
currently bound to it. Commands are listed first, followed by the macros (macro names are
surrounded by square brackets "[" and "]").
This command is unaffected by numeric arguments.
Note: The list is actually built in a special buffer named "Binding list". It is displayed as a

popup buffer or in a normal window, depending on the value of the $popflag variable.

177$ describe-bindings command
178# describe_bindings
179+ Commands:describebindings
180K describe-bindings;binding

$181 #182 +183 K184 describe-functions
No default binding.
This command creates a list of all the functions available in the MicroEMACS macro
language..
This command is unaffected by numeric arguments.
Note: The list is actually built in a special buffer named "Function list". It is displayed as a

popup buffer or in a normal window, depending on the value of the $popflag variable.

181$ describe-functions command
182# describe_functions
183+ Commands:describefunctions
184K describe-functions;function

$185 #186 +187 K188 describe-key
Default binding: ^X?
Syntax:

describe-key    keystroke
This command displays the command or macro bound to the specified keystroke on the
message line (macro names are surrounded by square brackets "[" and "]"). If the keystroke
has no binding, the text "Not Bound" is displayed.
When this command is used within a macro, the keystroke is specified using the
MicroEMACS keystroke syntax    or the mouse syntax(a ^G, for instance, is typed as a hat
character "^" followed by the letter "G").
When this command is used interactively mode, it displays a prompt: ": describe-binding"
and the keystroke is expected to by typed as if the actual bound command or macro was
being invoked (a ^G, for instance, is typed by holding down the Control key and pressing the
G key).
This command is unaffected by numeric arguments.

185$ describe-key command
186# describe_key
187+ Commands:describekey
188K describe-key;binding

$189 #190 +191 K192 describe-variables
Default binding:
No default binding.
This command creates a list of all the variables and their value. Environmental variables are
listed first, followed by user variables.
This command is unaffected by numeric arguments.
Note: The list is actually built in a special buffer named "Variable list". It is displayed as a

popup buffer or in a normal window, depending on the value of the $popflag variable.

189$ describe-variables command
190# describe_variables
191+ Commands:describevariables
192K describe-variables;variable

$193 #194 +195 K196 detab-line and detab-region
Default binding: ^X^D
Syntax:

n    detab-line
or:

detab-region
These two commands are synonyms. Both cause tab characters to be changed into the
appropriate number of spaces in the affected lines (the spacing between tab stops is
considered to be the value of the $hardtab variable).
If a numeric arguments is specified, n lines, starting from the one containing the point, are
affected. If n is null, the command modifies no line.
If no numeric argument is specified, all the lines belonging to the current region are affected.
If no region is defined, the command modifies no line.
After this command has executed, the point is left at the beginning of the last affected line.
The buffer is marked as modified, even if no modification actually took place.

193$ detab-line and detab-region commands
194# detab_line
195+ Commands:detabline
196K detab-line;detab-region;region;tabs

$197 #198 +199 K200 display
Default binding: ^XG
Syntax:

display    variable
This command displays the value of the specified variable on the message line. If variable is
not an existing environmental variable or user variable, the command fails.
This command is unaffected by numeric arguments.

197$ display command
198# display
199+ Commands:display
200K display;variable

$201 #202 +203 K204 end-macro
Default binding: ^X)
This command stops the recording of keystrokes, commands or mouse clicks into the
keyboard macro.
The command fails if MicroEMACS is not currently in recording mode.
This command is unaffected by numeric arguments.
See also: begin-macro and execute-macro.

201$ end-macro command
202# end_macro
203+ Commands:endmacro
204K end-macro;macro

$205 #206 +207 K208 end-of-file
Default bindings: M-> and FN> (End key)
This command places the point at the end of the buffer.
This command is unaffected by numeric arguments.

205$ end-of-file command
206# end_of_file
207+ Commands:endoffile
208K end-of-file

$209 #210 +211 K212 end-of-line
Default binding: ^E
This command places the point at the end of the current line.
This command is unaffected by numeric arguments.

209$ end-of-line command
210# end_of_line
211+ Commands:endofline
212K end-of-line

$213 #214 +215 K216 end-of-word
No default binding.
Syntax:

n    end-of-word
This command moves the point to the end of the nth following word. If the point was located
within a word before invoking the command, that word counts as the first one (thus, if n is 1,
the point moves to the first character following the current word). If an attempt is made to
move past the buffer's end, the command fails but the point is still moved to the end of the
buffer.
If no numeric argument is specified, it is equivalent to n = 1.
If n is null, the command has no effect.
If n is negative, it causes the command to behave like previous-word (invoked with the
numeric argument -n).

213$ end-of-word command
214# end_of_word
215+ Commands:endofword
216K end-of-word

$217 #218 +219 K220 entab-line and entab-region
Default binding: ^X^E
Syntax:

n    entab-line
or:

entab-region
These two commands are synonyms. Both cause space characters to be compressed into
tab characters wherever possible in the affected lines (the spacing between tab stops is
considered to be the value of the $hardtab variable).
If a numeric arguments is specified, n lines, starting from the one containing the point, are
affected. If n is null, the command modifies no line.
If no numeric argument is specified, all the lines belonging to the current region are affected.
If no region is defined, the command modifies no line.
After this command has executed, the point is left at the beginning of the last affected line.
The buffer is marked as modified, even if no modification actually took place.

217$ entab-line and entab-region commands
218# entab_line
219+ Commands:entabline
220K entab-line;entab-region;region;tabs

$221 #222 +223 K224 exchange-point-and-mark
Default binding: ^X^X
Syntax:

n    exchange-point-and-mark
This command swaps the point and the mark number n.
If no numeric argument is specified, it is equivalent to n = 0.
If markn does not exist, the command fails.

221$ exchange-point-and-mark command
222# exchange_point_and_mark
223+ Commands:exchangepointandmark
224K exchange-point-and-mark;position;point;mark

$225 #226 +227 K228 execute-buffer
No default binding.
Syntax:

n    execute-buffer    buffer
This command executes the macro language statements from the specified buffer.
The command fails if the buffer does not exist or if an executed macro statement (within the
buffer) fails.
If a positive numeric argument is specified, the buffer is executed n times. If n is negative or
null, the command has no effect.

225$ execute-buffer command
226# execute_buffer
227+ Commands:executebuffer
228K execute-buffer;macro

$229 #230 +231 K232 execute-command-line
Default binding: M-^X
Syntax:

execute-command-line    command line
This command executes the specified command line exactly as if it were part of a macro.
This is mostly used interactively to invoke a command but prevent it from fetching its own
arguments interactively.
This command is unaffected by numeric arguments (note that the command line itself may
have its own numeric argument).

229$ execute-command-line command
230# execute_command_line
231+ Commands:executecommandline
232K execute-command-line;command

$233 #234 +235 K236 execute-file or source
Default binding: M-^S
Syntax:

n    execute-file    file
or:

n    source    file
This command executes the macro language statements from the specified file, after
reading it into an invisible buffer.
The file does not need to be a fully qualified path name: if it is a simple filename, it is
searched along the path.
The command fails if the file cannot be found or if an executed macro statement (within the
file) fails.
If a positive numeric argument is specified, the file is executed n times. If n is negative or
null, the command has no effect.

233$ execute-file and source commands
234# execute_file
235+ Commands:executefile
236K execute-file;source;macro

$237 #238 +239 K240 execute-macro
Default binding: ^XE
Syntax:

n    execute-macro
This command replays the last recorded keyboard macro.
If a negative or null numeric argument is specified, the command does nothing. If a positive
numeric argument is given, the recorded keyboard macro is played n times. If no numeric
argument is given, the recorded macro is played once.
The command fails if MicroEMACS is currently in recording mode.
See also: begin-macro and end-macro.

237$ execute-macro command
238# execute_macro
239+ Commands:executemacro
240K execute-macro;execute;macro

$241 #242 +243 K244 execute-macro-n
Default binding (n from 1 to 9): S-FN n , for n = 10: S-FN0
No default binding for n greater than 10.
Syntax:

arg    execute-macro-n
MicroEMACS has 40 such commands (i.e. n can be a number from 1 to 40). Each causes the
execution of the corresponding numbered macro (created by the store-macro command).
If a strictly positive numeric argument is specified, the macro is executed repetitively arg
times. If arg is negative or null, nothing happens.
See also: execute-procedure

241$ execute-macro-n command
242# execute_macro_n
243+ Commands:executemacron
244K execute-macro-n;macro

$245 #246 +247 K248 execute-named-command
Default binding: M-X
Syntax:

n    execute-named-command    command
In interactive mode, this command causes a colon ":" to appear on the message line. You
can then type the name of the command you want to execute and strike Enter. If you type a
space or the meta key, MicroEMACS will attempt to complete the name for you. This
interactive use provides access to commands that do not have a key binding.
When used within a macro, execute-named-command makes the named command
behave as if it had been called interactively, thus causing it to prompt the user for any
arguments it needs.
If a numeric argument is specified, it is simply transmitted to the named command.

245$ execute-named-command command
246# execute_named_command
247+ Commands:executenamedcommand
248K execute-named-command;command

$249 #250 +251 K252 execute-procedure or run
Default binding: M-^E
Syntax:

n    execute-procedure    macro
or:

n    run    macro
These two commands are synonyms. They both cause the execution of the named macro
(created by the store-procedure command).
If a strictly positive numeric argument is specified, the macro is executed repetitively n
times. If n is negative or null, nothing happens.
See also: execute-macro- n

249$ execute-procedure or run commands
250# execute_procedure
251+ Commands:executeprocedure
252K execute-procedure;run;macro

$253 #254 +255 K256 execute-program
Default binding: ^X$
Syntax:

execute-program    program
or:

n    execute-program    program
This command spawns an external program, without an intervening shell.
The program argument is a string. Note that if it contains spaces (as would be necessary to
specify command line options), the string should be quoted.
Under MS-Windows:

This command allows you to launch a Windows application from MicroEMACS. The
current working directory where the application executes is set to the directory of the
file in the current window (or, if that window is not associated to a filename, to the
last visited directory).
If no numeric argument is specified, MicroEMACS and the launched application run
independently. If a numeric argument is specified, MicroEMACS synchronizes with the
application.

Note: Under MS-DOS, you cannot use this command to invoke built-in system commands
(like DIR, for instance). Use shell-command instead.

253$ execute-program command
254# execute_program
255+ Commands:executeprogram
256K execute-program;execute;spawn

$257 #258 +259 K260 exit-emacs
Default binding: ^X^C
Syntax:

n    exit-emacs
This command terminates MicroEMACS.
If no numeric argument is specified and some buffers contain text that has been changed
but not yet saved, you will be asked for a confirmation. If a numeric argument is specified,
the command terminates MicroEMACS unconditionally.

257$ exit-emacs command
258# exit_emacs
259+ Commands:exitemacs
260K exit-emacs;exit;quit

$261 #262 +263 K264 fill-paragraph
Default binding: M-Q
This command reformats the current paragraph, causing all of its text to be filled out to the
current fill column (Which is 72 by default and is set with the set-fill-column command or the
$fillcol variable).
This command is unaffected by numeric arguments.

261$ fill-paragraph command
262# fill_paragraph
263+ Commands:fillparagraph
264K fill-paragraph;fill;paragraph

$265 #266 +267 K268 filter-buffer
Default binding: ^X#
Syntax:

filter-buffer    program
This command spawns the external filter program (for instance: SORT or FIND) and feeds it
the contents of the current buffer. The results replace the original text in the buffer.
Under Microsoft Windows, this command creates a DOS box and synchronizes with it.
This command is unaffected by numeric arguments.

265$ filter-buffer command
266# filter_buffer
267+ Commands:filterbuffer
268K filter-buffer;filter;buffer;execute;spawn;shell;DOS

$269 #270 +271 K272 find-file
Default binding: ^X^F
Syntax:

find-file    file name
If the named file is already loaded somewhere in the editor, this command brings its buffer
up in the current window. Otherwise, the file is searched for on disk. If it is found, a new
buffer is created and the contents of the file are read into it. If the file does not exist, a new
empty buffer is created. In all cases, the buffer is brought up in the current window.
This command is unaffected by numeric arguments.

269$ find-file command
270# find_file
271+ Commands:findfile
272K find-file;file;open;read

$273 #274 +275 K276 find-screen
Default binding: A-F
Syntax:

find-screen    screen name
This command brings up the named screen. If the screen name does not exist, a new screen
is created. On text systems, this screen is displayed on top of the others. On graphic
systems, the OS window containing this screen is brought to the foreground.
This command is unaffected by numeric arguments.

273$ find-screen command
274# find_screen
275+ Commands:findscreen
276K find-screen;screen

$277 #278 +279 K280 forward-character
Default binding: ^F and FNF (right arrow)
Syntax:

n    forward-character
This command moves the point forward by n characters. If n is a negative number, the point
is moved backward. If no numeric arguments is specified, the point is moved forward by one
character.
Note: end of lines count as one character.
If the move would take the point beyond the boundaries of the buffer, this command fails
and the point is left at said boundary.

277$ forward-character command
278# forward_character
279+ Commands:forwardcharacter
280K character;position;point;forward-character

$281 #282 +283 K284 goto-line
Default binding: M-G
Syntax:

n    goto-line
or
goto-line    n

This command moves the point to the first character of line number n in the current buffer.
The command fails if n is lower than 1 or if the buffer is empty. If n is greater than the
number of lines in the buffer, the point is simply positioned at the end of the buffer.

281$ goto-line command
282# goto_line
283+ Commands:gotoline
284K position;point;goto-line

$285 #286 +287 K288 goto-mark
Default binding: M-^G
Syntax:

n    goto-mark
This command moves the point to the location of the mark number n.
If no numeric arguments is specified, the mark number 0 is used.
If n is greater than 9, it is treated as the remainder of the division of n by 10.

285$ goto-mark command
286# goto_mark
287+ Commands:gotomark
288K position;mark;goto-mark

$289 #290 +291 K292 goto-matching-fence
Default binding: M-^F
When the point is located on a fence character (curly brace, bracket, or parenthesis), this
command will make it jump to the matching fence character.
If the point is not located on a fence character or there is no matching fence, a beep sounds
and the command fails.
This command is unaffected by numeric arguments.

289$ goto-matching-fence command
290# goto_matching_fence
291+ Commands:gotomatchingfence
292K goto-matching-fence;fence;brace;parenthesis;bracket

$293 #294 +295 K296 grow-window
Default binding: ^X^ and ^XZ
Syntax:

n    grow-window
If n is a positive number, this command increases the height of the current window by n
lines. The window located immediately below the current window (or, if the current window
is at the bottom of the screen, the window located immediately above it) shrinks by n lines.
If that would cause the shrinking window to become too small to display any text, the
command fails.
If the current screen contains only one window, the command fails.
If n is a negative number, this command acts as if the shrink-window command had been
invoked with the corresponding positive number (-n).
If no numeric arguments is specified, the height of the window is increased by one line.
To change the size of the current window by specifying an absolute value, use the resize-
window command.

293$ grow-window command
294# grow_window
295+ Commands:growwindow
296K grow-window;resize;window

$297 #298 +299 K300 handle-tab
Default binding: ^I (Tab key)
Syntax:

n    handle-tab
or:

handle-tab
The behavior of this command depends on the numeric argument (n) that is supplied to it:

With no argument, it simply inserts a single tab character or enough space characters
(depending on its configuration...) to get to the next tab stop.
With an non-zero argument n, tabs stops are reset to every nth column and handle-tab
is reconfigured to insert space characters in sufficient number to get to the next tab
stop. This also sets the $softtab variable to n.
With an argument n of zero, handle-tab is reconfigured so that it inserts true tab
characters (its default behavior) and the tab stop interval is reset to its default value of
8.

The distance which a true tab character moves the cursor is reflected by the value of the
$hardtab variable. Initially set to 8, this determines how far each tab stop is placed from the
previous one.

297$ handle-tab command
298# handle_tab
299+ Commands:handletab
300K tabs;handle-tab

$301 #302 +303 K304 help
Default binding: M-?
This command brings up a window to display the contents of a text file named EMACS.HLP
located on the path. This file usually contains a summary of the MicroEMACS commands and
default key bindings.
The command fails if the EMACS.HLP file cannot be found.
This command is unaffected by numeric arguments.

301$ help command
302# help
303+ Commands:help
304K help

$305 #306 +307 K308 help-engine
No default binding.
Syntax:

help-engine    file    key
or:

help-engine    file
This command invokes the MS Windows WinHelp application to display the specified help
file. If a key is specified, the WinHelp application is instructed to search and display the first
topic that matches that key. Otherwise, the first topic displayed is the help file's table of
content.
This command is unaffected by numeric arguments.
This command is available only under the MS Windows version of MicroEMACS.

305$ help-engine command
306# help_engine
307+ Commands:helpengine
308K help-engine;help

$309 #310 +311 K312 hunt-backward
Default binding: A-R
Syntax:

n    hunt-backward
If n is a positive number, this command searches backwards for the nth occurrence of the
search string. That search string is the one that was used the last time a search-forward or
search-reverse command was issued. The interpretation of the search string is dependant on
whether MAGIC mode is set or not in the current buffer.
If a matching text is found in the buffer, the point is moved to the first character of that text.
Otherwise, the command fails. The command also fails if there is no search string.
If n is a negative number, this command acts as if the hunt-forward command had been
invoked with the corresponding positive number (-n).
If no numeric arguments is specified, or if the numeric argument is null, it is equivalent to n
= 1.

309$ hunt-backward command
310# hunt_backward
311+ Commands:huntbackward
312K hunt-backward;search

$313 #314 +315 K316 hunt-forward
Default binding: A-S
Syntax:

n    hunt-forward
If n is a positive number, this command searches forward for the nth occurrence of the
search string. That search string is the one that was used the last time a search-forward or
search-reverse command was issued. The interpretation of the search string is dependant on
whether MAGIC mode is set or not in the current buffer.
If a matching text is found in the buffer, the point is moved to the first character following
that text. Otherwise, the command fails. The command also fails if there is no search string.
If n is a negative number, this command acts as if the hunt-backward command had been
invoked with the corresponding positive number (-n).
If no numeric arguments is specified, or if the numeric argument is null, it is equivalent to n
= 1.

313$ hunt-forward command
314# hunt_forward
315+ Commands:huntforward
316K hunt-forward;search

$317 #318 +319 K320 i-shell
Default binding: ^XC
This command spawns a command line shell.
Under MS Windows, this command launches a DOS box (a "shell box" under Windows NT).
The current working directory where the shell starts is set to the directory of the file in the
current window (or, if that window is not associated to a filename, to the last visited
directory).
This command is unaffected by numeric arguments.

317$ i-shell command
318# i_shell
319+ Commands:ishell
320K i-shell;spawn;DOS;shell

$321 #322 +323 K324 incremental-search
Default binding: ^XS
This command is always interactive. It prompts the user for    a search string but, unlike what
happens with the search-forward command, the search happens and the display is updated
as each new search character is typed.
While searching towards the end of the buffer, each successive character leaves the point at
the end of the entire matched string. Typing a ^S causes the next occurrence of the string to
be searched for (where the next occurrence does not overlap the current occurrence). A ^R
changes the direction to a backwards search (as performed by a reverse-incremental-search
command), pressing the meta key terminates the search and ^G aborts the operation.
Pressing the Backspace key (or using ^H) backs up to the previous match of the string or, if
the starting point is reached, it deletes the last character from the search string.
The characters composing the search string are always interpreted literally. MAGIC mode has
no effect on incremental searches.
If the search fails, a beep sounds and the search stalls until the search string is edited back
into something that exists (or until the operation is aborted).
This command is unaffected by numeric arguments.

321$ incremental-search command
322# incremental_search
323+ Commands:incrementalsearch
324K incremental-search;search

$325 #326 +327 K328 indent-region
Default binding: M-)
Syntax:

n    indent-region
This command inserts n tab characters in front of each line within the current region.
If the numeric argument n is not specified, one tab is inserted per line.
If CMODE is set in the current buffer, lines that begin by a pound sign "#" are not modified
(this is to keep C preprocessor directives flush to the left).
Note: the undent-region command can be used to undo the effect of this command.

325$ indent-region command
326# indent_region
327+ Commands:indentregion
328K indent-region;tabs;region

$329 #330 +331 K332 insert-clip
Default binding: S-FNC (Shift + Insert)
Syntax:

n    insert-clip
This command is only available under MS Windows. It inserts the contents of the Windows
clipboard at the point.
If the numeric argument n is specified, n copies of the clipboard's contents are inserted.

329$ insert-clip command
330# insert_clip
331+ Commands:insertclip
332K insert-clip

$333 #334 +335 K336 insert-file
Default binding: ^X^I
Syntax:

insert-file    file
This command inserts the contents of the specified file into the current buffer, at the point.
After the insertion, the point remains at its original place if the $yankflag variable is TRUE.
Otherwise, the point is moved to the end of the inserted text.
This command is unaffected by numeric arguments.

333$ insert-file command
334# insert_file
335+ Commands:insertfile
336K insert-file;file;read

$337 #338 +339 K340 insert-space
Default binding: ^C
Syntax:

n    insert-space
This command inserts n space characters at the point. After the insertion, the point remains
at its original place.
If the numeric argument n is not specified, a single space character is inserted.

337$ insert-space command
338# insert_space
339+ Commands:insertspace
340K insert-space

$341 #342 +343 K344 insert-string
No default binding.
Syntax:

n    insert-string    string
This command inserts the specified string at the point. After the insertion, the point is
moved to the end of the inserted text.
If the numeric argument n is specified, n copies of the specified string are inserted (if n is
negative, it is taken as -n). If n is 0, nothing happens.

341$ insert-string command
342# insert_string
343+ Commands:insertstring
344K insert-string

$345 #346 +347 K348 kill-paragraph
Default binding: M-^W
Syntax:

n    kill-paragraph
This command deletes the current paragraph, leaving a copy of it in the kill buffer.
If a positive numeric argument n is specified, n paragraphs, starting with the current one,
are deleted. If n is negative or null, nothing happens.

345$ kill-paragraph command
346# kill_paragraph
347+ Commands:killparagraph
348K kill-paragraph;delete;kill;paragraph

$349 #350 +351 K352 kill-region
Default binding: ^W
This command deletes the characters belonging to the current region, leaving a copy of the
deleted text in the kill buffer.
This command is unaffected by numeric arguments.

349$ kill-region command
350# kill_region
351+ Commands:killregion
352K kill-region;kill;region

$353 #354 +355 K356 kill-to-end-of-line
Default binding: ^K
Syntax:

n    kill-to-end-of-line
This command's deletes text, leaving a copy of it in the kill buffer. The text affected depends
on the numeric arguments applied to the command:

If it is used without a numeric argument, kill-to-end-of-line truly behaves as its name
indicates, deleting the text from the point to the end of the current line, but preserving
the newline character, unless the point is located at the end of a line in which case the
command just deletes the newline character.
If the numeric argument is 0, the command deletes the text from the start of the current
line up to the point.
If the numeric argument n is positive, the command deletes text from the point forward
until n newlines have been removed.
If the numeric argument n is negative, the command deletes text from the point
backwards until n newlines have been removed and the beginning of a line has been
reached.

353$ kill-to-end-of-line command
354# kill_to_end_of_line
355+ Commands:killtoendofline
356K kill-to-end-of-line;kill

$357 #358 +359 K360 list-buffers
Default binding: ^X^B
Syntax:

list-buffers
or:

n    list-buffers
This command creates a list of all the buffer with, for each buffer, the file it was read from,
its size, and the active modes. The list is stored in a buffer named "[Buffers]" and is
displayed in either a popup buffer
or a regular window, depending on the value of the $popflag variable.
Within the list, an at sign "@" in column one shows that a file has already been read into a
buffer. A star "*" in column two means that the contents of the buffer have been modified
since the last time they were written to disk. A pound sign "#" in column three indicates the
file was to large to read into memory and was truncated.
The modes are shown in columns 5 through 14, using a single letter code for each active
mode:

Code Corresponding mode:
W WRAP
C CMODE
E EXACT
V VIEW
O OVER
M MAGIC
Y CRYPT
A ASAVE
R REP

Used without a numeric argument, list-buffers does not list invisible buffers. If a numeric
argument is given, this command lists all buffers, including those hidden buffers used by
MicroEMACS for internal data and macros storage.

357$ list-buffers command
358# list_buffers
359+ Commands:listbuffers
360K list-buffers;buffer

$361 #362 +363 K364 list-screens
Default binding: A-B
This command creates a list of all the screens with, for each screen, the names of the buffers
visible in windows on that screen. The list is stored in a buffer named "[Screens]" and is
displayed in either a popup buffer
or a regular window, depending on the value of the $popflag variable.
This command is unaffected by numeric arguments.

361$ list-screens command
362# list_screens
363+ Commands:listscreens
364K list-screens;screen

$365 #366 +367 K368 macro-to-key
Default binding: ^X^K
Syntax:

macro-to-key    macro name    keystroke
This command associates a macro with a keystroke, thus creating a binding. A keystroke can
be bound only to one command or macro at a time, so when you rebind it, the previous
binding is forgotten. On the other hand, a macro can have more than one keystroke bound
to it.
This command cannot be used to specify the key binding for a command. That is performed
by the bind-to-key command.
The keystroke is specified using the keystroke syntax or the mouse syntax.
This command is unaffected by numeric arguments.

365$ macro-to-key command
366# macro_to_key
367+ Commands:macrotokey
368K macro-to-key;binding

$369 #370 +371 K372 macro-to-menu
No default binding
Syntax:

macro-to-menu    macro name    menu name
This command is available only under Microsoft Windows. It creates a menu item associated
with the specified macro. The menu name is specified using the menu name syntax.
If the menu name designates a menu item that already exists, the command fails.
If the menu name specifies menus that do not exist yet, they are created as part of the
creation of the menu item.
This command cannot be used to bind a command to a menu. That is performed by the
bind-to-menu command.
This command is unaffected by numeric arguments.

369$ macro-to-menu command
370# macro_to_menu
371+ Commands:macrotomenu
372K macro-to-menu;binding;menu

$373 #374 +375 K376 maximize-screen
No default binding.
This command is available only under Microsoft Windows. It causes the current screen to be
enlarged so that it occupies all the available space on MicroEMACS's frame window. If the
current screen is already maximized at the time this command is invoked, nothing happens.
This command is unaffected by numeric arguments.
To restore the current screen to the size and position it had before invoking this command,
use the restore-screen command.

373$ maximize-screen command
374# maximize_screen
375+ Commands:maximizescreen
376K MDI;screen;maximize-screen

$377 #378 +379 K380 meta-prefix
Default binding: ^[(Escape key)
This is a dummy command meant to be used in combination with the bind-to-key command
in order to redefine the meta key.
For example, to define the F1 function key as being the meta key:

unbind-key    ^[
bind-to-key    meta-prefix    FN1

377$ meta-prefix command
378# meta_prefix
379+ Commands:metaprefix
380K meta-prefix

$381 #382 +383 K384 minimize-screen
No default binding.
This command is available only under Microsoft Windows. It causes the current screen to be
reduced to an icon. Unless there exists only one screen at the time this command is invoked
another screen becomes the current one. If the screen being minimized was maximized (see
maximize-screen), the screen becoming current is also maximized.
This command is unaffected by numeric arguments.
To restore the current screen to the size and position it had before invoking this command,
use the restore-screen command.

381$ minimize-screen command
382# minimize_screen
383+ Commands:minimizescreen
384K MDI;screen;minimize-screen

$385 #386 +387 K388 mouse-move-down
Default binding: MSa (Press on left mouse button)
This command is meant to be associated with a mouse action. It depends on the $xpos and
$ypos variables to contain the coordinates of the mouse pointer. It makes the screen and
window where the mouse was clicked the current ones. If the mouse pointer is within the
text part of a window (as opposed to the mode line) the point is placed at that position in the
text (or at the end of the line if the mouse pointer lies beyond the end of a line).
This command is unaffected by numeric arguments.
Note: Under the MS-Windows version of MicroEMACS, the selection of the current screen is

performed by the press on the left mouse button, regardless of the button's binding.
Mouse commands themselves cannot select the current screen.

See also: mouse-move-up

385$ mouse-move-down command
386# mouse_move_down
387+ Commands:mousemovedown
388K mouse-move-down

$389 #390 +391 K392 mouse-move-up
Default binding: MSb (Release of left mouse button)
This command is meant to be associated with a mouse action. It depends on the $xpos and
$ypos variables to contain the coordinates of the mouse pointer. The actions performed by
this command depend of where the previous mouse-move-down command was invoked:

If the mouse pointer was in the mode line part of a window and still is within that mode
line, or if it was in the text part of the window and still is, the text in the window is
scrolled as if it had been dragged by the mouse. Note that diagonal dragging is possible
only if the $diagflag variable is set to TRUE.
If the mouse pointer was on a mode line (except the bottom one), but has moved above
or under it, the mode line is moved up or down as if it had been dragged by the mouse,
thus resizing the affected windows.
Other cases produce no effect.

The command fails (putting FALSE in the $status variable) if the position of the mouse
pointer is the same as that for the last mouse-move-down command. This allows easy
detection of lack of mouse movement when the command is used in a macro.
This command is unaffected by numeric arguments.
Note: Under the MS-Windows version of MicroEMACS, the top left and bottom right corners

of a screen have no special meaning. Under other versions, mouse-move-up will
move the screen if the mouse-move-down was done in the top left corner and resize
the screen if mouse-move-down was done in the bottom right corner.

389$ mouse-move-up command
390# mouse_move_up
391+ Commands:mousemoveup
392K mouse-move-up

$393 #394 +395 K396 mouse-region-down and mouse-region-up
Default binding: MSe (Press on right mouse button)

and: MSf (Release of right mouse button)
These commands are meant to be associated with the two parts of a mouse click. Their
rather complex behavior is dependant on where the last mouse action took place and is best
described by the following topics:

Copying a Region
Killing a Region
Pasting Text

These commands are unaffected by numeric arguments.

393$ mouse-region-down and mouse-region-up commands
394# mouse_region_down
395+ Commands:mouseregiondown
396K mouse-region-down;mouse-region-up

$397 #398 +399 K400 mouse-resize-screen
No default binding
This command is meant to be associated with a mouse action. It depends on the $xpos and
$ypos variables to contain the coordinates of the mouse pointer. It modifies the size of the
current screen, bringing its lower right corner to where the mouse was clicked.
This command is unaffected by numeric arguments.

397$ mouse-resize-screen command
398# mouse_resize_screen
399+ Commands:mouseresizescreen
400K mouse-resize-screen;screen

$401 #402 +403 K404 move-window-down
Default binding: ^X^N
Syntax:

n    move-window-down
This command moves the window's view into it's buffer down by n lines, causing the text
visible in the window to scroll up. If the point scrolls out of view, it is repositioned on the first
character of the line located at the center of the window.
If no numeric argument is specified, the text is scrolled by one line.

401$ move-window-down command
402# move_window_down
403+ Commands:movewindowdown
404K move-window-down;scroll;window

$405 #406 +407 K408 move-window-up
Default binding: ^X^P
Syntax:

n    move-window-up
This command moves the window's view into it's buffer up by n lines, causing the text visible
in the window to scroll down. If the point scrolls out of view, it is repositioned on the first
character of the line located at the center of the window.
If no numeric argument is specified, the text is scrolled by one line.

405$ move-window-up command
406# move_window_up
407+ Commands:movewindowup
408K move-window-upscroll;window

$409 #410 +411 K412 name-buffer
Default binding: M-^N
Syntax:

name-buffer    name
This command renames the current buffer, giving it the specified name. Note that when a
buffer is associated with a file, changing the buffer's name has no effect on the file's name.
If a buffer bearing the specified name already exists, another argument is required, and so
on until a unique name is supplied.
This command is unaffected by numeric arguments.

409$ name-buffer command
410# name_buffer
411+ Commands:namebuffer
412K name-buffer;buffer

$413 #414 +415 K416 narrow-to-region
Default binding: ^X<
This command causes the text that does not belong to the current region to become
inaccessible until the widen-from-region command is invoked. The mode line displays the
symbol "<>" to indicate that the current window is associated with a narrowed buffer.
This command is unaffected by numeric arguments.

413$ narrow-to-region command
414# narrow_to_region
415+ Commands:narrowtoregion
416K narrow-to-region;region;buffer;scope

$417 #418 +419 K420 newline
Default binding: ^M (Return key)
Syntax:

n    newline
This command inserts n newline characters at the point. If the numeric arguments is absent,
it is taken as 1.
If n is equal to 1 and the buffer is in CMODE mode, C language indentation is performed:

If the new line is not empty (i.e. the point was not at the end of a line), no other action
takes place.
The new line is indented at the same level as the closest preceding non blank line
If the newline was inserted right after an opening brace "{", the new line is further
indented by one tab stop (as if the handle-tab command had been used).

If the buffer is in WRAP mode and the point is past the fill column, wrapping is performed on
the last word of the current line before the newline character is inserted.
The command fails if n is negative.

417$ newline command
418# newline
419+ Commands:newline
420K newline

$421 #422 +423 K424 newline-and-indent
Default binding: ^J
Syntax:

n    newline-and-indent
This command inserts n newline characters at the point. If the numeric arguments n is
absent, it is taken as 1.
The new line is indented with enough tab and space characters to match the indentation of
the preceding line (the one where the point was when newline-and-indent was invoked).
The command fails if n is negative.

421$ newline-and-indent command
422# newline_and_indent
423+ Commands:newlineandindent
424K newline-and-indent;newline

$425 #426 +427 K428 next-buffer
Default binding: ^XX
Syntax:

n    next-buffer
This command causes the current window to display the nth next buffer in the circular list of
buffers kept by MicroEMACS. If the numeric arguments n is absent, it is taken as 1.
The command fails if n is not positive.

425$ next-buffer command
426# next_buffer
427+ Commands:nextbuffer
428K next-buffer;buffer

$429 #430 +431 K432 next-line
Default binding: ^N
Syntax:

n    next-line
This command moves the point to the nth next line. If the numeric arguments n is absent, it
is taken as 1.
If n is negative, the point is moved to the nth previous line. If n is 0, nothing happens.
When line move commands (next-line or previous-line) are used in a row, the point is kept
at the same column it was at before the first of the line moves. If that column lies beyond
the end of the current line the point is temporarily brought back to the end of that line.
The command fails if the point is already at the end of the buffer (or the beginning if n is
negative).

429$ next-line command
430# next_line
431+ Commands:nextline
432K position;point;next-line

$433 #434 +435 K436 next-page
Default bindings: ^V and FNV (Page Down key)
Syntax:

next-page
or:

n    next-page
This command has two different behaviors, depending on the presence or absence of a
numeric arguments:
If no numeric argument is specified, the window's view into it's buffer is paged down. If the
window contains more than 2 lines of text, the new view overlaps the previous one by two
lines: the last two lines of text in the initial view are displayed at the top of the window.
If a positive numeric argument n is specified, the window's view into it's buffer is moved
down by n lines, causing the text visible in the window to scroll up.
If a negative numeric argument n is specified, the window's view into it's buffer is moved up
by n lines, causing the text visible in the window to scroll down, as if the previous-page
command had been invoked, with a numeric argument of -n.
In all cases, even if a numeric argument of 0 is given, the point is moved to the first
character at the top of the window.

433$ next-page command
434# next_page
435+ Commands:nextpage
436K position;next-page

$437 #438 +439 K440 next-paragraph
Default binding: M-N
Syntax:

n    next-paragraph
If used without a numeric arguments, this command moves the point just past the last
character of the current paragraph or, if outside a paragraph, to the end of the next
paragraph.
If this command is used with a positive numeric argument n, the point is moved to the nth
next end of paragraph.
If n is negative, next-paragraph behaves as if the previous-paragraph command had been
invoked with an argument of -n.

437$ next-paragraph command
438# next_paragraph
439+ Commands:nextparagraph
440K next-paragraph;position;point;paragraph

$441 #442 +443 K444 next-window
Default binding: ^XO
Syntax:

n    next-window
If used without a numeric arguments, this command makes the next window immediately
below the current one the new current window. MicroEMACS updates the highlight of the
mode line to indicate the new current window, and places the blinking cursor at the point
within that window.
If this command is used with a positive numeric argument n, the nth window from the top of
the screen is made the current one (window numbering starts at 1).
If n is negative, the -nth window from the bottom of the screen is made the current one.
The command fails if n (or -n) is greater than the number of windows in the screen.

441$ next-window command
442# next_window
443+ Commands:nextwindow
444K next-window;window

$445 #446 +447 K448 next-word
Default bindings: M-F and FN^F (Ctrl + Right arrow)
Syntax:

n    next-word
This command moves the point to the first character of the nth next word. If an attempt is
made to move past the buffer's end, the command fails but the point is still moved to the
end of the buffer.
If no numeric argument is specified, it is equivalent to n = 1.
If n is null, the command has no effect.
If n is negative, it causes the command to behave like previous-word (invoked with the
numeric argument -n).

445$ next-word command
446# next_word
447+ Commands:nextword
448K next-word;word;position;point

$449 #450 +451 K452 nop
No default binding.
This command has no effect and is unaffected by numeric arguments. Its main purpose is to
be the command pointed to by the $bufhook, $cmdhook, $exbhook, $readhook and
$writehook variables.

449$ nop command
450# nop
451+ Commands:nop
452K nop

$453 #454 +455 K456 open-line
Default binding: ^O
Syntax:

n    open-line
This command adds n newline characters after the point. If the numeric arguments is
absent, it is taken as 1.
The command fails if n is negative.

453$ open-line command
454# open_line
455+ Commands:openline
456K open-line;newline

$457 #458 +459 K460 overwrite-string
No default binding.
Syntax:

overwrite-string    string
This command replaces the characters from the point on with the characters from the
specified string. If the overwriting would extend past the end of the line, the remaining
characters from the string are simply added at the end of the line (the newline character is
not overwritten).
This command is unaffected by numeric arguments.

457$ overwrite-string command
458# overwrite_string
459+ Commands:overwritestring
460K overwrite-string;OVER

$461 #462 +463 K464 pipe-command
Default binding: ^X@
Syntax:

pipe-command    program
This command uses the shell to execute a program, but rather than displaying what the
program prints, it attempts to place it in a buffer named "command" to let you edit it and/or
save it.
The program argument is a string. Note that if it contains spaces (as would be necessary to
specify command line options), the string should be quoted.
The VIEW mode is set on the "command" buffer at completion of this command.
Under Microsoft Windows, this command launches the program within a DOS box and
synchronizes with it. The current working directory where the program executes is set to the
directory of the file in the current window (or, if that window is not associated to a filename,
to the last visited directory).
This command is unaffected by numeric arguments.

461$ pipe-command command
462# pipe_command
463+ Commands:pipecommand
464K pipe-command;execute;spawn;DOS;shell;pipe

$465 #466 +467 K468 pop-buffer
No default binding.
Syntax:

pop-buffer    buffer
or:

n    pop-buffer    buffer
This command causes the specified buffer to be displayed as a popup in the current screen.
If a numeric arguments is present, the buffer is marked as being invisible (hidden from the
next-buffer command).

465$ pop-buffer command
466# pop_buffer
467+ Commands:popbuffer
468K pop-buffer;buffer

$469 #470 +471 K472 previous-line
Default binding: ^P
Syntax:

n    previous-line
This command moves the point to the nth previous line. If the numeric arguments n is
absent, it is taken as 1.
If n is negative, the point is moved to the nth next line. If n is 0, nothing happens.
When line move commands (next-line or previous-line) are used in a row, the point is kept
at the same column it was at before the first of the line moves. If that column lies beyond
the end of the current line the point is temporarily brought back to the end of that line.
The command fails if the point is already at the beginning of the buffer (or the end if n is
negative)

469$ previous-line command
470# previous_line
471+ Commands:previousline
472K position;point;previous-line

$473 #474 +475 K476 previous-page
Default bindings: M-V and FNZ (Page Up key)
Syntax:

previous-page
or:

n    previous-page
This command has two different behaviors, depending on the presence or absence of a
numeric arguments:
If no numeric argument is specified, the window's view into it's buffer is paged up. If the
window contains more than 2 lines of text, the new view overlaps the previous one by two
lines: the top two lines of text in the initial view are displayed at the bottom of the window.
If a positive numeric argument n is specified, the window's view into it's buffer is moved up
by n lines, causing the text visible in the window to scroll down.
If a negative numeric argument n is specified, the window's view into it's buffer is moved
down by n lines, causing the text visible in the window to scroll up, as if the next-page
command had been invoked, with a numeric argument of -n.
In all cases, even if a numeric argument of 0 is given, the point is moved to the first
character at the top of the window.

473$ previous-page command
474# previous_page
475+ Commands:previouspage
476K position;previous-page

$477 #478 +479 K480 previous-paragraph
Default binding: M-P
Syntax:

n    previous-paragraph
If used without a numeric arguments, this command moves the point to the first character of
the current paragraph or, if outside a paragraph, to the beginning of the previous paragraph.
If this command is used with a positive numeric argument n, the point is moved back to the
nth beginning of paragraph.
If n is negative, next-paragraph behaves as if the next-paragraph command had been
invoked with an argument of -n.

477$ previous-paragraph command
478# previous_paragraph
479+ Commands:previousparagraph
480K previous-paragraph;position;point;paragraph

$481 #482 +483 K484 previous-window
Default binding: ^XP
Syntax:

n    previous-window
If used without a numeric arguments, this command makes the window immediately above
the current one the new current window. MicroEMACS updates the highlight of the mode line
to indicate the new current window, and places the blinking cursor at the point within that
window.
If this command is used with a positive numeric argument n, the nth window from the
bottom of the screen is made the current one (window numbering starts at 1).
If n is negative, the -nth window from the top of the screen is made the current one.
The command fails if n (or -n) is greater than the number of windows in the screen.

481$ previous-window command
482# previous_window
483+ Commands:previouswindow
484K previous-window;window

$485 #486 +487 K488 previous-word
Default bindings: M-B and FN^B (Ctrl + Left arrow)
Syntax:

n    previous-word
This command moves the point to the beginning character of the nth preceding word. If the
point was located within a word before invoking the command, that word counts as the first
one (thus, if n is 1, the point moves to the first character of the current word). If an attempt
is made to move beyond the buffer's beginning, the command fails but the point is still
moved to the beginning of the buffer.
If no numeric argument is specified, it is equivalent to n = 1.
If n is null, the command has no effect.
If n is negative, it causes the command to behave like next-word (invoked with the numeric
argument -n).

485$ previous-word command
486# previous_word
487+ Commands:previousword
488K previous-word;position;point;word

$489 #490 +491 K492 query-replace-string
Default binding: M-^R
Syntax:

n    query-replace-string    pattern    replacement
This command attempts to replace, from the point onward, each piece of text that matches
the pattern string by the replacement string. The pattern string is interpreted literally,
unless MAGIC mode is enabled in the current buffer.
Each time a match is found, you are queried and can answer by one of the following
keystrokes:

Y replaces the current matching text
N skips the current match
! replaces the current matching text and all following matches without anymore

queries.
U jumps back to the last performed replacement and undoes it
^G aborts the command, leaving the point at its current position
. (dot) aborts and moves the point back to where the command was originally issued
? lists the above options

If no numeric arguments is specified, all the matching pieces of text are processed until the
end of the buffer is reached. If a positive numeric argument is used, only the first n matches
are taken into account. If n is negative, the command fails.
When this command is invoked interactively, the keystroke used to signal the end of the
pattern or replacement string is specified by the $sterm variable (it is usually the Meta key).
Also, both strings may have default values (which are stored in the $search and $replace
variables). If you want to replace a string with nothing, and there is a non-empty default for
the replacement string, striking ^K will override that default and enter an empty string
instead.
Note: to perform global string replacements without interactive involvement, use the

replace-string command.

489$ query-replace-string command
490# query_replace_string
491+ Commands:queryreplacestring
492K query-replace-string;replace

$493 #494 +495 K496 quick-exit
Default binding: M-Z
This command causes MicroEMACS to terminate, but only after having written all the
changed buffers into their respective files.
This command is unaffected by numeric arguments.
Note: to terminate MicroEMACS without saving the changed buffers, use the exit-emacs

command.

493$ quick-exit command
494# quick_exit
495+ Commands:quickexit
496K quick-exit;exit;quit

$497 #498 +499 K500 quote-character
Default binding: ^Q
Syntax:

n    quote
This command inserts literally the next character typed by the user at the point. Even the
newline character can be inserted this way, but this causes it to loose its line-splitting
meaning.
If a positive numeric arguments is specified, the quoted character is inserted n times. If n is
negative, the command fails. If n is null, nothing is inserted, but the typing of a character is
still required.

497$ quote-character command
498# quote_character
499+ Commands:quotecharacter
500K quote-character

$501 #502 +503 K504 read-file
Default binding: ^X^R
Syntax:

read-file    file name
This command reads the named file into the current buffer, replacing the buffer's contents
with the text from the file. The file name associated to the buffer is not changed, so you
must make sure that replacing the text in the original file with that from the read one is what
you are intending when you use this command.
This command is unaffected by numeric arguments.

501$ read-file command
502# read_file
503+ Commands:readfile
504K read-file;read;file

$505 #506 +507 K508 redraw-display
Default bindings: M-^L and M-!
Syntax:

n    redraw-display
If a non zero numeric argument is specified, this command scrolls the text in the current
window so that the current line is displayed as the nth line from the top of the window if n is
positive, or as the -nth line from the bottom of the window if n is negative.
If no numeric argument is specified, or if n is zero, the current line is displayed at the center
of the window.

505$ redraw-display command
506# redraw_display
507+ Commands:redrawdisplay
508K redraw-display;window

$509 #510 +511 K512 remove-mark
Default binding: ^X    (Ctrl+X Spacebar)
Syntax:

n    remove-mark
This command eliminates the mark number n.
If no numeric argument is specified, it is equivalent to n = 0.
If markn does not exist, nothing happens.

509$ remove-mark command
510# remove_mark
511+ Commands:removemark
512K remove-mark;mark

$513 #514 +515 K516 rename-screen
No default binding.
Syntax:

rename-screen    new name
This command changes the name of the current screen to the specified new name. If the
new name is already in use, the command fails.
This command is unaffected by numeric arguments.

513$ rename-screen command
514# rename_screen
515+ Commands:renamescreen
516K rename-screen;screen

$517 #518 +519 K520 replace-string
Default binding: M-R
Syntax:

n    replace-string    pattern    replacement
This command replaces, from the point onward, each piece of text that matches the pattern
string by the replacement string. The pattern string is interpreted literally, unless MAGIC
mode is enabled in the current buffer.
If no numeric arguments is specified, all the matching pieces of text are processed until the
end of the buffer is reached. If a positive numeric argument is used, only the first n matches
are processed. If n is negative, the command fails.
When this command is used interactively, the keystroke used to signal the end of the
pattern or replacement string is specified by the $sterm variable (it is usually the Meta key).
Also, both strings may have default values (which are stored in the $search and $replace
variables). If you want to replace a string with nothing, and there is a non-empty default for
the replacement string, striking ^K will override that default and enter an empty string
instead.
Note: to have more interactive control over the replacement process, use the query-

replace-string command.

517$ replace-string command
518# replace_string
519+ Commands:replacestring
520K replace-string;replace

$521 #522 +523 K524 resize-window
Default binding: ^XW
Syntax:

n    resize-window
If n is a positive number, this command changes the height of the current window so that it
displays n lines of text. The window located immediately below the current window (or, if the
current window is at the bottom of the screen, the window located immediately above it)
shrinks accordingly. If that would cause the shrinking window to become too small to display
any text, the command fails.
If the current screen contains only one window, or if n is a negative number, the command
fails.
If no numeric arguments is specified, nothing happens.
To change the size of the current window by specifying a relative value, use the grow-
window or the shrink-window command.

521$ resize-window command
522# resize_window
523+ Commands:resizewindow
524K resize-window;resize;window

$525 #526 +527 K528 restore-screen
No default binding.
This command is available only under Microsoft Windows. It causes the current screen to be
restored to the size and position it had before it was maximized (see maximize-screen) or
iconized.(see minimize-screen). If the current screen is neither maximized nor iconized this
command has no effect.
This command is unaffected by numeric arguments.

525$ restore-screen command
526# restore_screen
527+ Commands:restorescreen
528K restore-screen;screen

$529 #530 +531 K532 restore-window
No default binding.
This command is only useful when there are multiple windows displayed on the current
screen. It causes the window that was current the last time the save-window command was
invoked to become the current window again.
If the window that was current the last time save-window was invoked no longer exists, or
if the screen is not the same, this command fails.
This command is unaffected by numeric arguments.

529$ restore-window command
530# restore_window
531+ Commands:restorewindow
532K restore-window;save-window

$533 #534 +535 K536 reverse-incremental-search
Default binding: ^XR
This command is always interactive. It prompts the user for    a search string but, unlike what
happens with the search-reverse command, the search happens and the display is updated
as each new search character is typed.
While searching towards the beginning of the buffer, each successive character leaves the
point at the beginning of the matched string. Typing a ^R causes the next occurrence of the
string to be searched for (where the next occurrence does not overlap the current
occurrence). A ^S changes the direction to a forward search (as performed by an
incremental-search command), pressing the meta key terminates the search and ^G aborts
the operation. Pressing the Backspace key (or using ^H) returns to the previous match of
the string or, if the starting point is reached, it deletes the last character from the search
string.
The characters composing the search string are always interpreted literally. MAGIC mode has
no effect on incremental searches.
If the search fails, a beep sounds and the search stalls until the search string is edited back
into something that exists (or until the operation is aborted).
This command is unaffected by numeric arguments.

533$ reverse-incremental-search command
534# reverse_incremental_search
535+ Commands:reverseincrementalsearch
536K reverse-incremental-search;search

$537 #538 +539 K540 save-file
Default binding: ^X^S
This command writes the contents of the current buffer to disk, if the buffer's contents have
been changed since the last read or write operation or the last invocation of the unmark-
buffer command.
If the current buffer does not have a file name associated to it (for instance if the buffer has
never been subjected to a find-file, read-file, write-file or change-file-name command), the
save-file command fails.
If the current buffer is narrowed, a confirmation is requested before writing the text to the
file.
This command is unaffected by numeric arguments.

537$ save-file command
538# save_file
539+ Commands:savefile
540K save-file;save;file;write

$541 #542 +543 K544 save-window
No default binding.
This command saves a reference to the current window, so that the next time the restore-
window command is invoked, that window becomes the current window again.
This command is unaffected by numeric arguments.

541$ save-window command
542# save_window
543+ Commands:savewindow
544K save-window;restore-window

$545 #546 +547 K548 scroll-next-down
Default binding: M-^V
Syntax:

scroll-next-down
or:

n    scroll-next-down
This command causes the equivalent of a next-page command to be performed on the
window located just below the current one (or the top window if the current one is at the
bottom of the screen).
If there is only one window displayed in the current screen, this command is equivalent to
the next-page command.

545$ scroll-next-down command
546# scroll_next_down
547+ Commands:scrollnextdown
548K scroll-next-down;next-page

$549 #550 +551 K552 scroll-next-up
Default binding:
Syntax:

scroll-next-up
or:

n    scroll-next-up
This command causes the equivalent of a previous-page command to be performed on the
window located just below the current one (or the top window if the current one is at the
bottom of the screen).
If there is only one window displayed in the current screen, this command is equivalent to
the previous-page command.

549$ scroll-next-up command
550# scroll_next_up
551+ Commands:scrollnextup
552K scroll-next-up;previous-page

$553 #554 +555 K556 search-forward
Default binding: ^S
Syntax:

n    search-forward    search string
If n is a positive number, this command searches forward for the nth occurrence of the
search string. The interpretation of the search string is dependant on whether MAGIC mode
is set or not in the current buffer.
If a matching text is found in the buffer, the point is moved to the first character following
that text. Otherwise, the command fails.
If n is a negative number, this command acts as if the search-reverse command had been
invoked with the corresponding positive number (-n).
If no numeric arguments is specified, or if the numeric argument is null, it is equivalent to n
= 1.
Note: the search string becomes the value of the $search variable

553$ search-forward command
554# search_forward
555+ Commands:searchforward
556K search-forward;search

$557 #558 +559 K560 search-reverse
Default binding: ^R
Syntax:

n    search-reverse    search string
If n is a positive number, this command searches backwards for the nth occurrence of the
search string. The interpretation of the search string is dependant on whether MAGIC mode
is set or not in the current buffer.
If a matching text is found in the buffer, the point is moved to the first character of that text.
Otherwise, the command fails.
If n is a negative number, this command acts as if the search-forward command had been
invoked with the corresponding positive number (-n).
If no numeric arguments is specified, or if the numeric argument is null, it is equivalent to n
= 1.
Note: the search string becomes the value of the $search variable

557$ search-reverse command
558# search_reverse
559+ Commands:searchreverse
560K search-reverse;search

$561 #562 +563 K564 select-buffer
Default binding: ^XB
Syntax:

select-buffer    buffer
or:

n    select-buffer    buffer
This command displays the named buffer in the current window. If that buffer does not yet
exist, it is created.
If a numeric arguments is present, the buffer is marked as being invisible (hidden from the
next-buffer command).

561$ select-buffer command
562# select_buffer
563+ Commands:selectbuffer
564K select-buffer;buffer

$565 #566 +567 K568 set
Default binding: ^X^A
Syntax:

set    variable    value
or:

n    set    variable
This command sets the value of the specified variable to n if a numeric arguments is present
and to value otherwise.
The variable must be a user variable or an environmental variable . In the latter case, if the
environmental variable does not exist, the command fails.

565$ set command
566# set
567+ Commands:set
568K set;variable

$569 #570 +571 K572 set-encryption-key
Default binding: M-E
Syntax:

set-encryption-key    key
This command sets the current buffer's encryption key (used when the buffer is in CRYPT
mode). The specified key can be up to 128 characters long. A length of at least 5 characters
is recommended.
This command is unaffected by numeric arguments.

569$ set-encryption-key command
570# set_encryption_key
571+ Commands:setencryptionkey
572K set-encryption-key;encryption

$573 #574 +575 K576 set-fill-column
Default binding: ^XF
Syntax:

n    set-fill-column
This command sets the fill column, (used by the fill-paragraph command) to n.
Note that this also sets the $fillcol variable to n.

573$ set-fill-column command
574# set_fill_column
575+ Commands:setfillcolumn
576K set-fill-column;fill

$577 #578 +579 K580 set-mark
Default bindings: M-    (Ctrl+X Spacebar) and M-.
Syntax:

n    set-mark
This command sets the mark number n at the point.
If no numeric argument is specified, it is equivalent to n = 0.

577$ set-mark command
578# set_mark
579+ Commands:setmark
580K set-mark;mark

$581 #582 +583 K584 shell-command
Default binding: ^X!
Syntax:

shell-command    program
or:

n    shell-command    program
This command uses the shell to execute the named program.
The program argument is a string. Note that if it contains spaces (as would be necessary to
specify command line options), the string should be quoted.
Under MS-Windows:

This command launches the program within a DOS box. The current working directory
where the program executes is set to the directory of the file in the current window
(or, if that window is not associated to a filename, to the last visited directory).
If no numeric argument is specified, MicroEMACS and the launched program run
independently. If a numeric argument is specified, MicroEMACS synchronizes with the
program.

Note: Under MS-Windows 3.x, you cannot use this command to launch a Windows
application. Use execute-program instead.

581$ shell-command command
582# shell_command
583+ Commands:shellcommand
584K shell-command;execute;spawn;shell;DOS

$585 #586 +587 K588 show-files
No default binding
Syntax:

show-files    starname
This command creates a list of all the files matching the specified starname. The starname
can contain a directory specification.
For instance, under MS-Windows, the command:

show-files    "C:\WINDOWS*.INI"
will create a list of all the files ending by ".INI" in the directory "C:\WINDOWS".

MicroEMACS appends a star "*" to the end of the specified starname, and appends a dot-star
".*" if the starname does not contain a dot character. Thus:

show-files    "C:\WINDOWS\A"
is equivalent to specifying:
show-files    "C:\WINDOWS\A*.*"

This command is unaffected by numeric arguments.
Note: The list is actually built in a special buffer named "File List". It is displayed as a

popup buffer or in a normal window, depending on the value of the $popflag variable.

585$ show-files command
586# show_files
587+ Commands:showfiles
588K show-files;file

$589 #590 +591 K592 shrink-window
Default binding: ^X^Z
Syntax:

n    shrink-window
If n is a positive number, this command decreases the height of the current window by n
lines. The window located immediately below the current window (or, if the current window
is at the bottom of the screen, the window located immediately above it) grows by n lines. If
the decrease of height would cause the current window to become too small to display any
text, the command fails.
If the current screen contains only one window, the command fails.
If n is a negative number, this command acts as if the grow-window command had been
invoked with the corresponding positive number (-n).
If no numeric arguments is specified, the height of the window is decreased by one line.
To change the size of the current window by specifying an absolute value, use the resize-
window command.

589$ shrink-window command
590# shrink_window
591+ Commands:shrinkwindow
592K shrink-window;resize;window

$593 #594 +595 K596 split-current-window
Default binding: ^X2
Syntax:

n    split-current-window
This command splits the current window into two windows. Both windows view the current
buffer at the current point.
If a numeric arguments is present and not equal to 1, the lower of the two windows becomes
current. If n = 1, the upper window becomes current.
If no numeric argument is present, the upper window is selected as current if the point was
in the upper half of the split window, otherwise, the lower window is selected.
The command fails if it would result in a window too small to display any line of text.
To rid the screen of extraneous windows, use the delete-window or the delete-other-windows
commands.

593$ split-current-window command
594# split_current_window
595+ Commands:splitcurrentwindow
596K split-current-window;window

$597 #598 +599 K600 store-macro
No default binding
Syntax:

n    store-macro
      contents
          of
      macro
!endm

This command stores the commands and directives that follow it, up to the next !ENDM
directive, into a "numbered macro". That macro can be invoked later by the execute-macro-
n command.
A numeric arguments must be specified and it must be a number from 1 to 40. Otherwise,
the command fails.

597$ store-macro command
598# store_macro
599+ Commands:storemacro
600K store-macro;macro

$601 #602 +603 K604 store-procedure
No default binding
Syntax:

store-procedure    name
      contents
          of
      macro
!endm

or:
n    store-procedure
      contents
          of
      macro
!endm

If no numeric arguments is specified, this command stores the commands and directives
that follow it, up to the next !ENDM directive, into a "named macro" or "procedure". That
procedure can be invoked later by the run or execute-procedure command, with the
argument name.
If a numeric argument is specified, this command is equivalent to store-macro.

601$ store-procedure command
602# store_procedure
603+ Commands:storeprocedure
604K store-procedure;macro

$605 #606 +607 K608 tile-screens
No default binding
Syntax:

n    tile-screens
This command is available only under Microsoft Windows. It causes all non-iconic screens to
be rearranged in a tiled scheme. If the current screen is maximized (see maximize-screen) at
the time this command is invoked, it is restored to its non-maximized size first.
If a numeric arguments is present and equals 1, the screens are tiled vertically (i.e. on top of
each other). Otherwise, the screens are tiled horizontally (i.e. side by side). However, if there
are too many screens to tile (more than 3), the argument is ignored and a mix of vertical
and horizontal tiling is used.

605$ tile-screens command
606# tile_screens
607+ Commands:tilescreens
608K tile-screens;MDI;screen

$609 #610 +611 K612 transpose-characters
Default binding: ^T
This command swaps the character that is before the point and the character that is at the
point, unless the point is at the end of a line, in which case the two last characters of the line
are swapped around.
This command fails if the point is located at the beginning of a line.
This command is unaffected by numeric arguments.

609$ transpose-characters command
610# transpose_characters
611+ Commands:transposecharacters
612K transpose-characters

$613 #614 +615 K616 trim-region or trim-lines
Default binding: ^X^T
Syntax:

trim-region
or:

n    trim-lines
These two command are synonymous. They cause all the trailing space and tab characters
between the column position of the point and the end of the processed lines to be deleted.
If a numeric arguments is present, n lines, starting from the current one, are processed.
If no numeric argument is present, the lines processed are the ones that belong to the
current region.

613$ trim-region and trim-line commands
614# trim_region
615+ Commands:trimregion
616K trim-region;trim-line;region

$617 #618 +619 K620 unbind-key
Default binding: M-^K
Syntax:

unbind-key    keystroke
This command removes the association between a keystroke and a macro or a command,
thus destroying a binding.
The keystroke is specified using the keystroke syntax or the mouse syntax.
This command is unaffected by numeric arguments.

617$ unbind-key command
618# unbind_key
619+ Commands:unbindkey
620K unbind-key;binding

$621 #622 +623 K624 unbind-menu
No default binding
Syntax:

unbind-menu    menu name
This command is available only under Microsoft Windows. It destroys a menu item. The
menu name is specified using the menu name syntax.
If the menu name designates a menu item that does not exist, the command fails.
If the menu name specifies a menu (that itself contains menu items), all the menu hierarchy
under it is destroyed.
This command is unaffected by numeric arguments.

621$ unbind-menu command
622# unbind_menu
623+ Commands:unbindmenu
624K unbind-menu;binding;menu

$625 #626 +627 K628 undent-region
Default binding: M-(
Syntax:

n    undent-region
This command deletes the first n tab characters in front of each line within the current
region.
If the numeric argument n is not specified, the first tab of each line is deleted.
Note: this command is often used to undo the effect of an indent-region command.

625$ undent-region command
626# undent_region
627+ Commands:undentregion
628K undent-region;tabs;region

$629 #630 +631 K632 universal-argument
Default binding: ^U
This is a dummy command meant to be used in combination with the bind-to-key command
in order to redefine the universal argument key.
To define the F1 function key as being the universal argument key:

bind-to-key    universal-argument    FN1
Pressing the universal argument key causes a numeric argument of 4 to be generated. If
digits (and the minus sign) are entered following the universal argument, they are
interpreted to compose a numeric argument, much as if the meta key had been pressed.
Also, each further action on the universal argument key multiplies the existing numeric
argument by 4.

629$ universal-argument command
630# universal_argument
631+ Commands:universalargument
632K universal-argument;argument

$633 #634 +635 K636 unmark-buffer
Default binding: M-~
This command clears the change flag of the current buffer. This causes MicroEMACS to
forget that the buffer's contents have changed since they were last made equivalent to the
contents of a disk file (by append-file, find-file, read-file, save-file, view-file or write-file).
This command is unaffected by numeric arguments.
Note: the change flag of the current buffer can also be accessed via the $cbflags variable.

633$ unmark-buffer command
634# unmark_buffer
635+ Commands:unmarkbuffer
636K unmark-buffer;buffer

$637 #638 +639 K640 update-screen
No default binding
This command immediately updates all elements of the MicroEMACS display during the
execution of a macro. It has no visible effect when used interactively.
This command is unaffected by numeric arguments.

637$ update-screen command
638# update_screen
639+ Commands:updatescreen
640K update-screen;display

$641 #642 +643 K644 view-file
Default binding:
Syntax:

find-file    file name
If the named file is already loaded somewhere in the editor, this command brings its buffer
up in the current window. Otherwise, the file is searched for on disk. If it is found, a new
buffer is created and the contents of the file are read into it. If the file does not exist, a new
empty buffer is created. In all cases, the buffer is brought up in the current window, in VIEW
mode.
This command is unaffected by numeric arguments.

641$ view-file command
642# view_file
643+ Commands:viewfile
644K view-file;file;open;read;VIEW

$645 #646 +647 K648 widen-from-region
Default binding: ^X>
This command causes all the invisible text in the narrowed buffer becomes accessible and
visible again.
This command is unaffected by numeric arguments.

645$ widen-from-region command
646# widen_from_region
647+ Commands:widenfromregion
648K widen-from-region;region;buffer;scope

$649 #650 +651 K652 wrap-word
No default binding
This command replaces by a newline the first group of space or tab characters preceding the
point on the current line. The point is left where it was when the command was invoked.
If no space or tab character is found before the point, a new line is created after the current
one and the point is moved to it.
This command is unaffected by numeric arguments.
Note: the $wraphook variable (which points to the command or macro use to perform line

wrapping in WRAP mode) is set to wrap-word by default.

649$ wrap-word command
650# wrap_word
651+ Commands:wrapword
652K wrap-word;word

$653 #654 +655 K656 write-file
Default binding: ^X^W
Syntax:

write-file    file name
This command writes the contents of the current buffer to disk, using the specified file
name. This file name becomes the one associated with the buffer (indicated by the $cfname
variable).
This command is unaffected by numeric arguments.

653$ write-file command
654# write_file
655+ Commands:writefile
656K write-file;file;write;save

$657 #658 +659 K660 write-message or print
No default binding
Syntax:

print    message
or:

write-message    message
This command causes the specified message to appear on the message line.
This command is unaffected by numeric arguments.

657$ write-message and print commands
658# write_message
659+ Commands:writemessage
660K write-message;print;message

$661 #662 +663 K664 yank
Default binding: ^Y
Syntax:

n    yank
This command inserts the contents of the kill buffer at the point. If a numeric arguments is
present, the command is repeated n times.
If n is negative, the command fails.
The placement of the point after the execution of this command is determined by the value
of the $yankflag variable.

661$ yank command
662# yank
663+ Commands:yank
664K yank;kill

$665 #666 +667 K668 yank-pop
Default binding: M-Y
Syntax:

n    yank-pop
This command cycles the kill ring n times (as done by the cycle-ring command) and inserts
the contents of the kill buffer at the point. If the previous command was yank or yank-pop,
the text inserted by that command is deleted before the new text is inserted.
If no numeric argument is specified, it is equivalent to n = 1.
The placement of the point after the execution of this command is determined by the value
of the $yankflag variable.

665$ yank-pop command
666# yank_pop
667+ Commands:yankpop
668K yank-pop;yank;kill

